文章出处,原创于 https://HawkingOuYang.github.io/
机器学习:
torch
theano
Caffe
mxnet
苹果官方:https://developer.apple.com/machine-learning/
Neural Network: http://playground.tensorflow.org
图片识别:http://clarifai.com/demo
语音识别paper:https://blog.acolyer.org/2016/04/19/
语音识别应用:https://v.qq.com/x/page/q035357zsxx.html
机器翻译(google)
图片生成:https://arxiv.org/pdf/1605.05396v2.pdf
图片生成应用,阿里“鲁班”
来自硅谷的终身学习平台:https://www.bittiger.io/ http://community.bittiger.io/
数据科学家之路:https://lenadroid.github.io/posts/machine-learning-fsharp-accorddotnet.html
Python的编程利器:http://jupyter.org/install.html
在浏览器写Python:https://try.jupyter.org/
pip install wheel
pip install panda
pip install matplotlib
pip install scipy
import pandas as pd
import matplotlib.pyplot as plt # plotting
import numpy as np # dense matrices
from scipy.sparse import csr_matrix # sparse matrices
%matplotlib inline
df = pd.read_csv(‘1111.csv’)
df
爬虫
https://movie.douban.com/subject/26363254/
pip install -U kaggle-cli
pip install –upgrade html5lib==1.0b8
pip install beautifulsoup4
pip install request
from bs4 import BeautifulSoup
import requests
response = requests.get(‘https://movie.douban.com/subject/26363254/‘)
bs = BeautifulSoup(response.text, ‘lxml’)
name = bs.find(‘span’, attrs={‘property’:’v:itemreviewed’}).text
score = bs.find(‘strong’, attrs={‘property’:’v:average’}).text
sumary = bs.find(‘div’, id=’link-report’).text.strip()
print(name, score, sumary)
机器学习 - 线性回归
pip install sklearn
import numpy as np # dense matrices
import matplotlib.pyplot as plt # plotting
%matplotlib inline
x = np.linspace(1,10,20)
a = np.random.randint(1,10,20)
y = x * 4 + a
x,a,y
plt.plot(x,y,’o’)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x.reshape(20,1), y.reshape(20,1))
model.predict(6)
model.coef_
model.intercept_
y = kx + b
3.82222222 * 6 + 5.87777778